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1 Introduction where £(¢) and S denotesup(inf) of the sectional

Let Y Dbe a compactn-dimensional locally  cyrvatures ofY and the scalar curvature of,
symmetric Riemannian manifold with strictly  respectively.

negative sectional curvature. Note that the elements of the set introduced by (1)
As it is well knOWﬂ,Y is isometric to a double coset are labeled bw since every prime geodesic over
space/N\G/K=/\X where,G;K;/" and X denote:  coresponds to a conjugacy class of a primitive
a connected, rank-one, semi-simple Lie group; a hyperbolic elemeny0/ .

maximal compact subgroup ofs; a discrete,

. . . _ |(y)
torsion-free, co-compact subgroup af and the It IS also convenient to define a nort(y)=e

universal Riemannian covering space of, for hyperbolicyds (see also, Section 3).
respectively. Suppose that the Riemannian metric oveinduced
For the sake of simplicity, we shall consideéras from the Killing form is normalized so that the
MG/K with /~ acting as isometries OX . sectional curvature of varies betweer4 and-1
According to [8, pp. 134-135], prime geodesic .
theorem states that Now, (see, [8, p. 136])¢=n+qg-1, whereq=0,1,3,7
| depending on whethek is a real, a complex or a
def 09X gt uaternionic hyperbolic space or the Cayle
#{c,[1(y)<x} = 7 (x)= { 4 ar O( %) (1) ﬂyperbolic planey.p P e

If we calculate the integral on the right side of (1)
as x -+, where C, denotes a prime geodesic of by parts, we obtain a weaker from of the prime

alogx_;  The

XD’

the lengthl (y) overY, 5 is a constant (depending geodesic theorem i.e.,lim 7. (x)

Nn- +oo

on ) such that(l—ijasz%a and o is defined same resut in the same form was also proved in [13]
2n as well as in [15], wher¥ is not compact space but

by has a finite volume. The result of [15] that
1 _ corresponds to the real hyperbolic manifolds with
(n-1)(-¢)2, §=¢, cusps case was later refined in [20]. There, the
a={4n(n- ])(—§)+ s author applied a variant of the techniques [17], [18].
T , £#& He also applied the Ruelle zeta function instead of
6n(—?)5 the Selberg zeta. Finally, in [1], we adapted the

approach [21] to the setting [20] and thus further
improved the result [20] so to coincide with the best
known estimate in the case of compact Riemann
surfacey, i.e., with the estimate (see, [21], [4])
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Let o be the half line ina on the which the
(0= ¥ i ( SK) o 3(| )-1 @ positive roots take positive values. Put
- (x)= i|x%)+0O| x*(log X . _ .
r ;:(5,1} A —exp(a )DA.
) Let oOM .
Following [7, p. 27], we distinguish between two
as x - +o, Wheres, denotes a zero of the Selberg . qas
zeta function associated Yo. _ ~ Case (&) o is invariant under the action of the
In this paper we improve the estimate (1) so to be in \wey| groupw .

accordance with (2).

Our main tool will be the zeta functions of Selberg
and Ruelle [7]. In particular, we shall utilize the fact

that these functions are meromorphic functions of
order not larger tham . This was proved in [2], [3] . .
when n is even. An analogous result for oddwill even) in [7, pp. 20-23), there is an elemgmiR(K)

be derived in Section 4. such thati” (y)=o. According to [7, p. 27],y is
The structure of the paper is as follows: Section 2 yniquely determined by this condition if is odd.

provides some necessary ~background —and pere :R(K). R(M) is the restriction map
preliminary material. In Section 3 we introduce the

zeta functions and assemble those theorems andinduced by the embedding M—K , where R(K)
facts we will need. In Section 4 we prove a number and R(M) are the representation rings over of

Note that this case may occurrifis either even or
an odd number. Moreover, this case includesgall
if niseven.

By Proposition 1.1 odd) and Proposition 1.2n(

of auxiliary results related to the analytic properties
of the zeta functions introduced in Section 3. In
Section 5 we state and prove the main result.
Section 6 is devoted to a derivation of the functional
equations of the zeta functions in the form [22] not
presented in [7]. In Section 7 we give concluding
remarks.

2 Preliminaries

In the sequel, we follow the notation of [7].

Assume thats is a linear group.

Let g=t0Op be the Cartan decomposition of the Lie
algebrag of G, a a maximal abelian subspace of
p and M the centralizer ofa in K with the Lie
algebram .

Let®(g,a) be the root system artl* (g,a) 0®(g,a)

a system of positive roots. BW we denote the
Wely group of ®(g.a) . Let

2

at®’ (g.a)

n= n,

be the sum of the root spaces. Then, the Ilwasawa

decompositionG=KAN corresponds to the lwasawa
decompositiong=tOpOn . Define

dim(n,)a .
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K andM , respectively.
In [7, p. 28], the authors introduced the operators

Ai(vo) and A  (y.o). These operators
correspond to spaces, andY, respectively. Here,
x is a finite-dimensional unitary representation of
[~ and X, denotes a compact dual space of the

symmetric spacex .

Case (b) o is not invariant under the action of the
Weyl groupw .

In this casen is odd andX is the real hyperbolic

spaceHR".

By Proposotion 1.1 in [7, p. 20], there is a unique
elementymém and a splittingsOy/ =y" 0Oy,
where s is the spin representation &pin( ) and

y* are reperentations df , such that for the non-

trivial elementwOwW

a—wazsign(\&)( $ - §) i(y)
and

otwo=i (y+ —y_),

whereyv, is the last coordinate of the highest weight

of o (see, [7, Section 1.1.2]) ansf are the half-
spin representations &pin( n- 3.

Define y=y"-y OR(K) and y*=)y" -y OR(K).
Now, we define the operatorsA, ,(y.0) and

A,X(ys,a) in the same way as in the casg (The
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operator A(X(ys,a) corresponds to a Dirac

opegator. We make the Dirac operatdd, , (o)
unique by reasoning exactly as in [7, p. 29].
Being self-adjoint, the operatob, ,(o) satisfies

A/.)((VS’U) :|DYJ((U)| :
Let Eo() be the family of spectral projections of a
normal operatorA . Put

m, (sy 7)= TE (vo) ({ #) '

my (s,y 0—): TrEAj(y,a) ({ }S)
and

m (sp)= Tf( B, (o) ( $))‘ T( B, (o) (- }3))
for sOC.

Definition 1. [7, p. 49, Def. 1.17]Let n be even
and o0OM . Then, yOR(K) is called o -admissible
if i (y)=o and my(syo)=R(3$
0<sdL(o).

for all

Here, P, (s) resp.L(o) denote the polynomial resp.

the lattice given by [7, Definition 1.13, p. 47; see
also p. 40]. In particular, (o) =T (e, +Z) , whereT

and egD{O%} and given by the same definition.

By [7, p. 49, Lemma 1.18], there exists @a-
admissible yOR(K) for every yOM when n is

even.
Moreover, if n is odd, then the unique element in

R(K) corresponding t@r0M is a priori admissible
in some sense (see, [7, p. 54, Prop. 1,22]).

3 Zetafunctions
Since FOJG is co-compact and torsion-free, there

are only two types of conjugacy classes: the class of

the identity el and classes of hyperbolic
elements.

Let I, resp. Pr, denote the set of thd -
conjugacy classes of hyperbolic resp. primitive
hyperbolic elements il .

It is well known that every hyperbolic elemesiG

is conjugated to some elemeafm OA M (see,
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e.g., [13][15]). Following [7, p. 59], we put
I (g):|log (ag)| .

For sOC, R4 3> p, the Ruelle zeta function is
defined by the infinite product (see, [7, p. 96])

n-1

_ (-2)
Zey(s0)= [] def{1~((m,)0x(r)) %)
YoLPr,
where o and y are finite-dimensional unitary

representations dfl andr , respectively.
For sOC,Rg $>p, the Selberg zeta function is

defined by the infinite product (see, [7, p. 97])
Zs,(s0)=
0 e m)ontlos( s m ) #

WA, k=0

where S¢ is the k-th symmetric power of an
endomorphism, n=6n and ¢ is the Cartan
involution of g .

In the casel{) we also define

S, (s0)=%,(s7) 3,( wo),
the super zeta function

o)

and the super Ruelle zeta function

Zhalse) 5y

3)

wherewW is non-trivial element.

As known, the Ruelle zeta function can be
expressed in terms of Selberg zeta functions (see,
e.g., [10]-[12]). By [7, pp. 99-100], there exist sets

1,={(~)|-0M A0R} such that

n-1 (-9°

Zey(s0)=T1 1 Zsy(s+tp-Ar00)
p=0(~ A1,

Let A rep. Y denote the set of all elementsresp.

7 that appear in (4).

The following theorem holds true (see, [7, p. 113,
Th. 3.15]).
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Theorem A. The zeta functiongs , (so) , S ( 9)

and S; (sg) have meromorphic continuation to all

of C.
If n is even andy is o -admissible, then the

singularitities of Zs , (s o) are the following ones:
o at +is of order m, (syg) if s#£0 is an
eigenvalue ofA, , (y.0),
» at s=0 of order 2m, (Oyg) if 0 is an
eigenvalue ofA, , (y.0),
s at-s, sUT(N-¢,) of order
2deim()()voI(Y)
vol(Xy)
eigenvalue ofA, (y.0).

my (sy g). Thens>0 is an

If two such points coincide, then the orders add up.
If n is odd, then the singulatities @t , (so) (case

(a)) and of S, (sg) (caséb)) are:

« at +isof order m (syg) if sz0 is an
eigenvalue ofA, , (y.0),

» at s=0 of order 2m, (Oyg) if 0 is an
eigenvalue ofA, , (y.0).

In case(b) (n odd) the singularities o§; (sg) are
at is and have orderm;(sg) if sOR is an
eigenvalue oy , (o).

For odd n in case(b) the zeta functiorzs, (so)

has singularities atis,+ s]spe(f /Qx‘)((yS 0)) of

order %(m)((|q,ya)+r§(sq)) if sz0 and

m, (0y o) if s=0.

n
Here,d, =—(-1)2 if n is even andi=1 otherwise.
We have proved the following theorem.

Theorem B. [2, p. 528, Th. 4.1] Ifn is even and/
is o -admissible, then there exist entire functions
Z,(s) .Z( 9 of order at mosh such that

N

Zy(
Z, (

st(sﬁ):

NG
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where the zeros of, (s) correspond to the zeros of
Zs ,(so) and the zeros of, (s) correspond to the
poles ofZs , (so) . The orders of the zeros &f(s)
resp. Z,(s) equal the orders of the corresponding
zeros resp. poles &, (so) .

4 Auxiliary results

Theorem 2. Let n be an odd number.

It f(s){Z,(s0) .$( 1) &)}, then there
exist entire functionsz, (s), Z,( 9 of order at most
n such that

where the zeros af, (s) correspond to the zeros of
f(s) and the zeros ofz,(s) correspond to the
poles of f(s). The orders of the zeros df,(s)
resp. Z,(s) equal the orders of the corresponding
zeros resp. poles of(s).

Proof. Denote byS the set of singularities off(s).
If f(s)=Z,(so) (case &) or f(s)=S(s¢)

(case ), then, reasoning in the same way as in [2,
pp. 529-530], we obtain that

> |5 =0(1)

<15{9

for any £€>0.
Compared to the even-dimensional case, this case is
somewhat simpler. Namely, the singularities that
correspond ta4, (y.o) are missing.

Now, proceeding in exactly the same way as in [2,
p. 530] (see also, [5, p. 14]), we obtain the claim.

Let f(s)=S ( sg) (caseq)).
Put n(r):#{ sOspedy, , (o) $= r} .
Since D$X(a):A§X(yS,a) and A?X(ys,a) is an

eliptic operator of the second order, we have the
estimate

n(r)~Cr",r - +eo.
Now,
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z |S|—(n+£)_ z |S|—(n+£)+ z |S|—(n+£)=

Stq ==t )
0qd<1 |sz1
=o()+ ¥ [m(so)$™
dspecD, (o)

1
-o| Ty |-of

for any £>0.
Hence, by the same argumentation as in [2, p. 530],
the assertion follows.

Finally, if f(9=%,(so) (caseq)), the theorem

follows from the fact thatzZ, (so)=S( =7) ¥ ).
This completes the proof. O

Corollary 3. Let n be an odd number.

1 1(9)9 Zy (50) 2 ( )} then

where Z,(s) ,z( 9§ are entire functions of order at
mostnover C.

Proof. By (3), it is enough to prove the claim for

f (s):ZRX(sa) . However, if f (s):ZRx(sa) ,

then the claim is an immediate consequence of the
formula (4) and Theorem 2. O

Lemmad. If n is even and/ is o -admissible, then

Ny

2 o
PLT (w):kZ: pn—2k—1'wn 2k l!
=0
where
2T n
pn—2k—1= n C_ E_k ,k=0,1,...§— y
(Z_k_ljl (2 ]

and the numbersc, are defined by the asymptotic

expression
2150 o
Tre ™ol o 3 g tt.

k=-"
2
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P

g

P

Proof. By [7, pp. 47-48],R, (0)=0, P,(w)=-B,(w)
and P, (w)=wQ,(w), here Q, is an even
polynomial. Hence, P, is an odd polynomial.
Moreover, P, is a monic polynomial of degree-1
(see, e.g., [6, pp. 17-19], [23, pp. 240-243].

Put

el

2 — =
Pa(w)=k2_0 P2k 1W" 2kt

s P =1

n

o
By [7, p. 118], Q,(w)=Y G w™ 22, where
k=0

2T : n
Oai =~ i) |=0,1,...,E— 1. In other words,
0 —q _ 2T c
n-2k-1"Yn-2k 2=/ N\ “(n )’
(n—k—ljl 34
2
k=0,1,...g— 1. This completes the proof. O

Lemmab. Let n be an odd number. Put=1 in the
case(a) andr=2 in the casa€b). Then,

-1
2
2. Pk W

k=0

n-2k-1

(2

P, ()=

where

_(n=2K) Tvol( %)
Pr-2ic1™ rrdim(x) vol(Y) Ck—E”r

_ rrdim(x) vol(Y)

2 nTvoI(Xd)F(—gj

and the numberx;k_n are defined by the asymptotic

2

expression
B 2t-0 L
Tre Aulra) Sc ot 2.
k=0 k=
2

Proof. By [7, p. 48],P, (-w)=P, (w). Hence,PR, is

an even polynomial. Reasoning as in the proof of
Lemma 4, we put
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n-1
2 .
=) - n—2k—1, =1 2dim Y) X(Y)
a(’w) kZ:E) Ph-2k- 1w Pn-1 ZSX(sa)=del( A)((Vg a)2+ §)det( '%(,Vg(?')"'ﬁ X)L
By [7, p. 125], "
i 2 2m (m-1 2m 1
n-1 ex Mic_ms_l[z_l—zz _1] .
r rdim( x) vol(Y) % 2 N o X(Xg) m TmilEr &
[P, (t)dt=>"c nr( k——jw .
Tvol(Xy) o k0 k) 2
Hence, (see, [7, pp. 120-122])
( ( ) ) _2dim(x) x(Y)
Hence, det( A, (v,.0)-s x(%,)
Zs , (-so)=z2
Rl v e
n-1
r im( x) vol () L& N noken
o Balw=E(n-24 ‘i_gr( g Jur U
S X(Rq
2, (o)) ©
This completes the proof. O D™ (s)
Lemma 6. Let n be an even number. Suppose that =Zg, (so)0
H is a half-plane of the formRe(s)<-(20+¢), _2dim(x)x(Y)
£>0, minus the union of a set of congruent disks tan(ﬂ—wJ, ng x(x,)
about the points-s, sOT(N-¢,,)+p-A, JOA, exp —]—TFPJ(w) 2| 4o
707 . Then there exists a constaty such that 0 —cot(”—wj €,=0
Zn (s -
ZRVYESU; SCRHn ' s tan(”—w], € :1
rRy\S@ KR, (w) T’ij ”_i dw
for sOH. =ZSX(SU)EE T )7° ,
Proof. The identity (4) implies _
where K =—2nd|m()())((Y)
Z;Q;X(Sp-):nz_il(_l)p Z,SX(S+'0_/I7-DJ) (5) X(Xd)T
Zeay(s0) 50" 7 (-, Zsy(stp=A7DO0) Consider the caseec,:%. The casee,=0 is
Since n is even, we know that there exists-a o - discussed similarly.

admissibley, ,, OR(K) for every 70T . The identity (6) implies

Recall Theorem A. Now, it is enough to prove that '
4 -S S

if K is a half-plane of the fornRe(s)<-(p+¢), —ZS*E_ng Z*E Sgg+KPU(s)tan(%sj.

£>0, minus the union of a set of congruent disks SX d

about the points-s, sOT(N-¢,.,), 707, then

. , Zg,(so) .
there exists a constagf such that for al-07 Since % is bounded on every half-plane
Sy SO
1 Z' _S,O- .

Zsy(s700) <Cq|q™ Re(s)>p+e,£>0, we conclude thatM is

Zs,(s7 Do) ° Zs(-s0)
for sOK. bound&l on K. Morever, tan(lsj is bounded on
The proof is independent of the choice of We _ T )
simplify our notation by omitting the latter. the complement of the union of congruent disks

By [7, p. 118, Th. 3.19],Z5,(so) has the
representation
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about the pointsT(k+%j=T(k+eU), kOZ . Hence

(see, Lemma 4), the assertion follows. O

Lemma 7. Let nbe an odd number. Suppose that
H is a half-plane of the fornRe(s)<-(20+¢),

£>0. Then there exists a constapy such that

Zp,(sP)

<C. 4™t
ZR)((SU) Al

for sOOH.
Proof. The identity (5) holds true.
Hence, by Theorem A, it is enough to prove that if

K is a half-plane of the forme(s)<-(p+¢),£>0,
then there exists a constagisuch that for all
701

Z'SX(SVDJ)
ZS)((SfDU)

<Cs|§™

for sOK.

The proof does not depend on the choicerof
Hence, we simplify our notation by omitting it.
Suppose that the cas®) folds true, i.e., thatrOM
is Weyl-invariant.

By [7, p. 116, Th. 3.17],

2ndim()()v0I(Y)j

st(sﬂ)ze Tvl(x) 9 st(_sﬂ)'
Hence,

Zs(so) _2mdim(x)vol(Y) . Zs,(-s0)

Zs, (so) Tvol( %) ot Zs(-so)

Here, the polyunomiaP, corresponds to the case
(@) (r=1) of Lemma 5.

Now, by the same reasoning as in the proof of
Lemma 6, the theorem follows.

Suppose that the cad® fholds true. NowgOM is
not Weyl-invariant. Therefore, by [7, p. 116, Th.
3.18],

m”(Dva(g) ZmTITO, x)vol(Y -[
Ze,(s0)=¢ P (sawo)
for non-trivial wOW , wheres(Dy , (o)) is the eta
invariant of Dy , (o).

We obtain
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Zs (so) _2mdim(x) vol(Y)
Zsy(so) Tvol( Xq)

Z'S)((_S"wa)
st(_sfwa) .

R, (s)-

Here, the polynomiaP, corresponds to the cad® (
(r=2) of Lemma 5. Namely, this can be easily seen

from the derivation of the functional equation (3.21)
in[7, p. 117].

Now, reasoning as the previous case, the theorem
follows. O

Lemma 8. Let c,d0R,c<d. There exists a

sequence{ yj}, yj -+ as j -+, such that

Zh  (x+iygo
RX( : ):O(yjzn)

Zpy (x+iyo)

for xO(c,d).

Proof. Consider the identity (5).
It is enough to prove that there exists a sequence

{y;}, yj; -~ +o asj -+, such that for al-0Y

o[

for xO(a,b), wherea=c-p,b=d+p.

We consider the intervall, given by it,
t, —1<t<t,+1, wheret, >2p is fixed.

It suffices to prove that there existyi(t, — 1.t + 1
such that for all-O07

|Z'Sx(x+iy,rDa)|

|ZSX(x+iyrDa)|

|25, (x+iy7O0)

=0(y”") )

|ZSX(x+iyrDa)|

for xO(a,b).

Let S; be the set of all singularities of all zeta
functions Zs , (s700), 70T. Let Ng(t) be the
number of elements inS; on the intervalix,
O<x<t.

Let N(t) be the number of singularities of
Zs,(so) on the same interval. By Theorem A,
these singularities (for evem) are given in terms of
eigenvalues of A, ,(y, o), where y,OR(K) is

some admissible lift ofo. If n is odd, the
singularities in the case) resp. the case) are
given in terms of eigenvalues oA, ,(y.o) resp.
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A(X(ys,a). Hence, according to [9, p. 89, Th. 9.1]],
N(t)= Dlt”+o(t“(log t)_l) for some explicitly
known constanD, . However, theO - term does not
improve our result. For the sake of simplicity, we
take N (t):o(t“) . ConsequentIyNR(t):O(t”) .

It follows immediately that the number
singularities ofZg , (so) on 1, is O(tg).

of

Similarly, the number of elements i&; on I, is
o(t). i.e., itis at mostcg | for some constant,

Denote byl, the intervalit, t, —%<tst0 +§.

Since 1,014, the number of elements i%; on I,
is at mos{ Gg |-
Let us divide the interval, into 1+LCﬂ3J equal

intervals. By the Dirichlet principle, one of them
does not contain any element frofg. Let iy by

the midpoint of such an interval. We shall prove that
y satisfies (7) forxOd(a,b) and all70Y . The proof

does not depend on the choice oflTY. We
simplify our notation by omitting it, i.e., we prove
that
Zg , (x+i
s .W):O(yzn)
Zs y (x+iyo)
for xO(a,b).
By Theorem B and Theorem Z,(s) and Z,(s)
are entire functions of order at mast Hence, there
are canonical product expressions fBy(s) and

Z,(s) of the form (see, e.g., [10, p. 509])

Z,(9= & & aﬂq( a]exp{§+%+ +nj]

i=1,2, hereR is the set of zeros d, (s), n is the
order of the zero ofz (s) at s=0, g(s) is a
polynomial of degree at most.

Therefore,
Zs,(so) 1, o
ZS}((S’U)‘ S(nl n)+di(9- &($
+ -1 i-1 [Ejn_l
izzl;z( ) ”DR{(} a S—a
We have
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3

2 1+Lclr8J

1 .3, 1

n2 n
G 41+Cl(y+i] Y

i=1,2.
Now, for a small fixed e>0 and the choice
s, =x+i y, xO(a,b), we have

kg

3
—alz2 >23
y=aiz 41+

Z'S)((Sxﬂ):i 4 d B

Zs;((sxﬂ') Sx(nl n) di(s)- &l s)
8 n 1
Gt

where 8 denotes a singularity dfs , (so) and

{BlB<0.|B>p+e}
Blo<|Bl<p+e}
B|B=itp+e<tst, -1,
B0},
,6’|,8:it,t>lb+]} ,
B|B=itp+e<tst, -1,
Bl-B01,},
BlB=itt>t,+1 .

F PP F P PP
I

11
—— S AN A A S A

Note thatA =4 for oddn.
1
z |n

pinzg| B
BOA #8, we get

s L gy oy Loy,
;;%m(ﬁ] S8 {m%mwrlsx—ﬁJ )
Furthermore A, is a finite set. Hence,
s)_1 olosy L 1 oy
X ——=0|y"y ————|=0(y’
555l Bta ol

since |s - B2 y-p-£>Gy for some constant,
and all SOA, .

Since converges and|s,-g|zy for

Similarly, |s -f/= y—5+1>% and |g]>p+e for

BOA;. Hence,
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m(%jn_ﬁ' M&m s.- ﬁJ (ynz 1J
=0(y"(6-1")=o ¥

If BOA,, then|s,—A=|i y_ﬂ|>% and|ﬂ|>y—£>c4y
y

for some constart, . Therefore,

z(%]nsx B [ynz|ﬁ| "[sc- ﬁ|] (ynzl]

nj— 3 — n
-o(e)=o| v( ] |- #)
Similarly, |s, - B|=t-y>Gt for some constanC,
and B=itOA;. One has

Z(%jnsx B {ynmzﬂﬂ " sy iﬂl]
ool
=o[y(6+97)=o(y)

If BOA, then|s -pB/>y+p+e>y and|f]>p+e.
Hence,

%(%Jn7 [ynz 8" |sx1ﬁ|J

o gt

Similarly, |§<—ﬂ>y+6—]>y and |13|>t0_1>y_£>qy
for pOA, . We have

ﬂﬂzﬁs[%]n—ﬁ: {ynzw stlﬁlJ

g

It BOA,

Therefore,

then [s-Azy+t>t for B=-tOA.
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s) 1 _g 1
235 [ynzm s ﬁl]

[y [ ran (t)]=0( y7)

t+l

Finally, §<(nl )= q )andgl( s)-d5(s)= qvl)

We obtain
Zsx(sc0) ”)zo(f") .
Zs,(sc0)
This completes the proof. O

5 Main result

Theorem 9. Let Y be a compactn-dimensional,
locally symmetric Riemannian manifold with strictly
negative sectional curvature. Then,

-1 )
7 ()=3 (-)"" 5 i(x)
p=0 (701, . ‘E( 2pn+2p—11]2p}

n+2p—-
n+p-1
+O[X2/7n+2p—l(|og)—lj

as x - +wo, where sP™ is a singularity of the
Selberg zeta functiods (s+p-A.7) .

Proof. Fix some finite-dimensional
representationg0f and oOM .

We simplify our notation by omittingy and ¢ in
the sequel.

For gar, let n(g)=#(r, /(g)), wherer, is the

centralizer ofg in I and(g) is the group generated
by g.

If yOr, then y:}/o}(y)
For yOr, we introduce/\o(y):/\o(y(;*(")):log N(yp)

unitary

for somey, OPT .

By [7, pp. 96-97, (3.4)],

Z;Q(S)_ _q\n+1 -s >
ZR(S)_( 1) %/\O(y)N(y) Re(s)>20. (8)
We define
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jz,z/,_l t)dt, j=1,2,.

where

Let k=2n be an integer and>1, ¢c>2p.

By [19, p. 31, Th. B.] and (8)
1 c+|ooZR(S) X
2m A Ze(9 (5 )} (3 K

ds

st 3.Lsk

1 2 mls )

2mi .,

=(-1)™* Zx /\O(y)% 1- i
YT, ——>1 ——

(

(

N(») N(y)
k
:(—1)n+1i z /\O(y) 1—N_y)] i
k!VDrth(V)SX X

On the other hand, by [19, p. 18, Th. A]]

1 k
wk(x)zmﬂh%(y)g%(x‘ N(y))"-
Hence
_imw 1n+1ZR(S) Xs+k
R A E F ES N

Assume thatt'<-2p is not a pole of the integrand
of ¢, (x). Note that the identity (4) and Theorem A
yield that noc'<-k is a pole of the integrand of
¥ (x) if n is odd.

By Lemma 6 resp. Lemma 7, if is even resp. odd

Zx(s)

Zg(s)

by Lemma 8, there exists a seque{];zé I I

O(|s|“_1) on the lineRe(s)=¢ . Furthermore,

as j —» +», such that

wiin) o)

for tO[c',].
Fix somey; > 1.
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By construction of{y;}, we know that no pole of
Zx(9)
Zg(s)
Applying the Cauchy residue theorem to the
integrand of g, (x) over the rectangler(c,y)

occurs on the liném(s)=y; .

given by verticesc-iy,, c+iy;, c'+iy;, ¢ -iy;,
we obtain
1 oY, n+1ZR( ) XSJrk
— 1
i d, Y 3T e e
mZa(s) o
- Res;z[(—n) 1Z J ©)
oy Z(9 {5} {3 K
c+i d-i c+|yJ C+|yJ C iy,
el e [ [ [ T
2m c-i 2 cd=i Y, CHi é+| y eiy
We have
ic’f—i ( 1)n+1ZR(
2mi c—i ( )(

:O(xc"'k:jjdér]: c{ £k _jl d9= ¢ )

L el
2 (( PP k}’
s

£ “J O( | ““] o)

ot

c+i
cHy,
—O[x“k |

cH

1 o, ((_1)n+1 Z;q(s

2 c+H Y ZR ( S

Symilarly,
O 1 I M
27 o5 Za(s) s+ ) .(s k

o T [l

271 Zg(9)

sl

Hence, by (9) and (5)

ciy;
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(10)

1 c+i°°((_1)n+l Z4(9)

2mi

=3 ()
p=0 (=)

C-io

ie.,

n-1

(=2 (-9"™ ¥ ¥ c¢(psdK . (11)
p=0 (7)1, ZOAP
where °' denotes the set of poles of
Zs(s+p-A.7) xStk
Zs(stp-Ar) s} .(s k

Take k=2n. By (11),

n-1

Yon()=2(-)"™ ¥ ¥ c,(psd.20

p=0 (701, Z0AL7

Sy S o(prd)

n
p=0 (701, Z0A

(12)

where, for the sake of simplicity, we denote Ay

Zy(stp=dr) X"
the set of poles of =S
e set of poles o Zo(stp-Ar) s ) (s 2p

and byc,( ps.1) the residue as= z.
Zs(stp-A7) xS+2n
Zs(stp-A7) s+ ) (s 2pn
(z4)01, for somep{0,1,2,...m }.

By Theorem A, the singularities ofg(s+p-1.7),

corresponds to some

for evenn are: attis-p+.1 of orderm(sy, ) if
s#0 is an eigenvalue ofA,(y,.7), at -p+4 of
order 2n{ 0y, 7) if 0 is an eigenvalue of (), 7), at
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vol(Y)

vol(X)
(in this cases>0 is an eigenvalue ofA,(y.7)).

-s-p+4, sO(N-¢,) of order —2(—1)%1

m( s, %)

Here, y. is somer - admissible element iR(K).
Note that the singularities ofZg(s+p-A.7) at
-s-p+A, SOT[N-.) are all less than-p+.1.
Furthermore, the singularities ofg(s+p-A.7)
than correspond toA, (y.~) are contained in the
union of the interval[-2p+1.1] with the line
-p+A+iR . An overlap between these two kinds of
singularities may occur inside-2p+.1,-p+1) (see,
[7, pp. 114-115]).

If n is odd (case &), the singularities of
Zs(s+p-A.7)are: at+is-p+1 of order m(sy7)

if s#0 is an eigenvalue oA (y.7), at -p+4 of
order 2m( 0y 7) if 0 is an eigenvalue oA (y.7).

If n is odd (case hj), the singularities of

Zs(stp-A.7) are atis—p+/l,istpec(A((yS,r))
of order %m(|s{yr)+% mM(s) if sz0 and

m(0y7) if s=0.
Therefore, if n is odd, the singularities of
Zs(stp-A.7) are contained in the union of the

interval [-2p+1,1] with the line-p+1+iR.
The integers 0,-1,..;-2r are simple poles of

Xs+2n

s(s+d (s 20
(stp-A7)

. Z
simple poles onS(Ser_A?T)

These integers may also appear as

, I.e., as singularities of

Zs(s+p-A7). Denote byl, , the set of such

Put 1}, be the

{0-1,.;2h\},_ ,. The set of the remaining singular-

integers. to difference

rities sP”" of Zg(s+p-A.7) will be denoted by
Spf/l,
Reasoning as in [17, pp. 88-89], we write

+o00

Ea (s |

i=1

Zg(s+p-A.7) _oP7
Zs(stp-A7) s-z

where z is a singularity of Zg(s+p-1.7) and
oP” is the order ofz.
Now, for sP7'0O0SP7
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Cop- ‘(pr,/l)
ZI (S+p_/] 7_) Xs+2n
= i —_PrA)Es
Jim (s~ )Zs(s+p—/l AL (s on
| OPr«l
b7 5P
Slwgn (s S )S_ ey O (13)
; s+2n
Prd (e Prd) X
[1+i§,a,,sp,,(s & )]s(s+]) 55
:Op{-’/] Xspf«\+2n

P SpfA(sprA+]) _(Spr/l_,_zr) '

Let —jdl,, ,. We have

¢, (pr)= im2 2Zy(stp-A7) X"
J(p ) sL—de((SH) Z(sp-17) s )1 (.6 J

Since

9 Z;(s+p—/l 7.) Xs+2n

) st o) {3 (s 2

y +00 - Al Xs+2n
=0l [1+Zaf’_’j (st J)jzn

= [(s+1)
1=0
12
p7-,/] Xs+2n p;-'/l p;—(] . s+2n
=0f/ 5 ——+ol/"alT (st )5, to.
I|:|0(s+l) I|:|0(s+l)
1#] 1#]
and
g((s+ (o) J
ds Z(stp-A7) $s L (.8 2
- O—pjr/l s+2n|0 X— OpJT(l % 1 Xs+2n
2n 9 s+ +]
|_|(S+|) |_|(S+|)|¢j
10 10
1%] 1#]
of.ff‘ d Xs+2n
tgy X a1l (o )| 5 —— |+
[1(s+) M](s+)
12 1#]
we obtain
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_p/’/l )
ci(p7A)=5 X 12" log x
M(=i+)
120
%] (14)
oP7 A 2n 1 :
- - - +a1”_7j“‘ X 1ren,
. —j+l
—-j+)| 12
I|:|O( ) 1#]

1#]

Finally, let —jOil 'p,/,. Now,
ci(p7 )

Zi(s+p-A7) xS+2n

:s'l”_“j[(“ A CYSEECIET 2)3(15)

:Z's(—j+p—/l,7') X_j+2ﬂ
Zy(-j+p-A7) ﬁ(—j+|) .

1=0
1#]

We denote:
I—2n:{0|_1,..,—2|}] ,

- 2pMPL
Bora=) 710 —ZnF—j(pM)z({ "

%gr":Sp”nR

Prl=Prg

p,,{z[SpT"D%’” e 2n }1
A‘{Sprrlg%’w o/ &P <= 2n+2p:+2/:) 11}

Sofror b il voars

c‘*{u% pIelosis gl

Note thatCf_ =@ for k3{1,3 whenn is odd.
Now, we can write

> c(p7 )

ZIAP7

= Z ¢, (p7A)+ X o(prd) (16)

F' A 4] A

+3 5 o (pr )+ 2 c(prd)

k=121G, , 0},
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Cosider the sum ovez, _,#d in (16).
Since C;,, 0870 S and zs-2n- k- 2+

for zOC, _,, it follows from (13) than

p7 A
> c(ps )
ac;  #0
_ b7 Xz+2n
o e ¢ 2(z+D) (2 2)
:—2(—1)n VOI( ) k—e,) V- T)

xT (k=€ )-p+i+2n

DZn
M(-T(k

1=0

—6,)—p+/l+|).

The fact thaty. is - admissible element yields
my(sy, 7)=B( 9 for all 0<ssOL(7)=T(e,+Z). In

paticular, my(T(k-e.)y. 7)=P( T ke,)) for

kz%(2n+ 1~ p+.1)+e, . We obtain
> ¢(pr4)
ﬂcil)r(Fﬂ
o 1 3 Fj, (k—¢,)
= X 2n+l
le=(2n+ Hp+d)+e (T( +,0 —A- Zr)
ot ¥ (2n+ 1= p+ A+ Te, )™ B T kee,)
1 T2n+lk2r+1
Ie?(2n+1—p+/l)+e,
Hence, by Lemma 4,
2 c(p7 )
2c;,,
17
—Al v1 1 |_~(1
=0| X X > s —O(x).
kz?(2n+1—p+/|)+e,,

The sum over B in (16) is a finite one.

prA
Therefore, by the definition o8, |,
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P n+p-1
Y c,(prA)=0 x ™1
ZDBP/’«\

0 is a finite one as well.

(18)

The sum overC?
Hence, by (13),

prA

> Cz(p’r '/l)
0 48
" +0-1Y (19
= 3 of7 X2 -0 X2‘ anrZ/;—l (19)
ZDC;:«!#ﬂ z Z( Z+]) ( Vig 29’!

Combining (12) and (16)-(19), we obtain

éﬂzn(x)
n-1 "

=X ()" Y Y e(pr )
p=0 (7 AYD, 208, ,

n-1

2 ()Y Y (s )
p=0 (7 A, 4, ,

n-1

()™ Y Y g(pra) (0
p=0 (r A, ZC;,

+Y ()7 Y c,(ps )
p=0 ()01, 2087

n+p-1
+O[X n+2p-1
Supposel< hsg .

We introduce the operator

2n

Dyaf (X)=3(-2) [2In] f(x+(2-) 0. (21)

i=0

If f
then

is at least2n times differentiable function,

x+ht, +h  t+h (2n)
A5 ( H If”tldtl db, -

2

(22)

The mean value theorem applied to (22) yields

Dot (X)=h2m £ (5) (23)
where xO[ x,x+ 2nH}..
Sincey, is nondecreasing, we obtain
Wo (X)Sh "D n(XNSwo x+ 20, (24)
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Now, (20), (21) and the fact thatsg , imply

™2 A5 4020 (%)
Sy S nnge(pr )

p=0 (A, 08,

n-1 " ~ .

2 ()P Y3 b, (pr )

p=0 (73,4, ,

n-1 . o

+3 ()7 Y3 h e (pr ) (D)
p=0 (7)1, £C;

°
I
o

=

=
[
B
)

Consider the sum oveB, , on the riht hand side

of (25).
Let zOI Bp,/, ,2z=0.

Suppose thatodl, ,. Then, (14), (23) and the

facts: (x” log x)(n) =nllog % n.Eln:li—L, (x”)(n) =n!, yield

h2'03.6(p7 A)=¢7" logx, o+ §7" & 7, (26)

where x, 0] x,x+ 2ni} .

If o0l ,, then

ona+ Ze -,
s (pr )= (a7)

Zs(p-A7)

by (15). LetzOB,, ,,z=- -1
Suppose that 0l .

Since (xk log x)(n) = k!(_])”‘k‘l(n;rl:(]) ! and (Xk)(”) -0

for 0<k<n, KIN, we get

h ZnAan_j( p7— '/]): d)lf/{p_—]l’], (28)
wherex,_,_;0[x,x+ 2nl}.
If —j0l,, ,, then
h2"ng.c.;(p7 A)=0. (29)
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Now, (26)-(29) and the fact tharsg , imply

2 W5 (p7 A)=logy).  (30)

ﬂBPf«V
Consider the sum oveE>_ | on the right hand side
of (25). LetzOC3_ .

p7
By (13) and (23)

>?I«V,Z
-2 _ p7 A 5
h2"as.c,(pr A=la " =
p7 A p7 A n+p-1
- 0; oz < 0; )~(2 n+2p-1
g e g e

where x

or 120X, x+ 2nH . Hence,hsg and the fact

thatC;_ , is a finite set, yield

—2np+ 2 nTéD_—ll
> h?"Ac,(prA)=Q x ™. (31)
Zc,

Similarly, the sum ovec; _ , on the right hand side
of (25) is a finite one. We have

B30 (7 )=

for sP7'0C;, ,, where x,..0[x,x+2nf}. Hence,

reasoning as in [21, p. 246] and [20, p. 101], we
obtain

Z h_znA;nCz( p7 /])

4G, ,
XSP«’ A (32)
= Z prA +0 ( e ) !
p:,\E( ntp-1 :| S
s 20——.20
n+2p-1

wheresP” ! is countedo}’ " times in the last sum.
Finally, we estimate the sum ovSf’pQ;l in (25). Let
2051 By (13),

z+2n

¢, (prA)=a@"" e x

Yz 2
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We derive two estimates foh™"Aj c,(p7 ). h™2"A5 W0 (X)

Firstly, by (21), el &
=Z‘6(_ )p " 1 SP/ A

- + p= [ n+p
h znAZnCZ( p7 ,/]) s I:(2/)n+2;o— } (36)
y p7 A 20, \i(2n \ z+2n o(h** +o ¥ M™ 1
:h 2N OZ _1I 2 h z ( )
1 {7 5 )[i)("*( )

n+p—
(h—2nx,a+2nM n—l n+2,0— J
Since hsiz( , we obtain
n+p-1 P

h2"a5.c,(pr A)= q 21| t—erl )—(p+/l+2n). (33) Substituting h=x"2*"1 M =x™?"1 into (36) and
taking into account (24), we get

Secondly, by (22)

n-1 Spr,v
<3 (-1)™t x
‘h"Z”NC(pr/l) #{) DZ:‘E)( ) (r%ﬂlpsp,{(zpmp—l }Sp”'
2n>z I"I+2,0—:|.l (37)
2n0f7" Xehlh th 2pMPL
== ] gy dy, 0| x 2ot
X t2n t2
x+ht +h t,+h
<h2loP 127 T L] Pt

X 4 Analogously, (see, e.g. [20, pp. 101-102]), one
Hence, by the mean value theorem and the fact thatP"OVeS

hSZ ’ n-1 p+n+l Xspnl
. . IC 3 R R
“TAGC = X" p= 7 A oo 5, O
e pr )= £ %) (34 S =T
n+p-
Let M >2p. Now, using (33) and (34), we deduce +O[x2 n+2p—1} )
>, h5.c,(p7 ) .
4y Combining (37) and (38), we conclude that
= 3w (pr e X g pr) ) )
05 43! n- " X3
pidzsm 2o Yo(¥)=2 ()" ¥ =
p=0 (r,/l)mpsp,,‘[(z o1 }S
n+2p-1 (39)
20 7P"
=0 X-pu z |Z|_ +O h2n ~p+A+2n z |Z|-2n-l +O[X n+2p—1J.
) 48
[-p+dZsM B3

Now, using (39) and following lines of [20, p. 102],

M 0 finally obtai
o[’* I rldm,.(t)}c{ﬁzn o] iy )tj e inelly obtam
M

=+

n-1 .
O( ~pr AN )+O(h 2nX—p+/I+2nM—r+]) , m—(x):go(_l)Pan’fl(r%jl Zn;rp_l |i(Xspw)
’ SPME( 2pn+2p—1’2'0}
where N, _(t )-O(t”) denotes the number of +O{x2p%;‘ll(log X)_lJ
singularities of Zg(s+p-47) on the interval
-p+A+ix, 0<x<t.
Combining (25), (30)-(32) and (35), we obtain as x - +o . This completes the proof. O
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6 Functional equations
Theorem 10. Let n be even. Ify is o - admissibel,

then there exists a bounded functiéft) such that
as|t| - o,

Z,(01+it0)= 1() €V 7 (011 1),
where
K 7 n-2k
B _q\l gn-2k-2k 44211
() an 2T 2k§[2l 1]( 1)02 ]1t| .

Proof. Reasoning as in the proof of Lemma 6, we
obtain

Zs,(so)

(40)

Suppose thatc,:% .

It is known that afi| - o,

tanzz(o, +it)=

|H+o( 2”“‘)

This equation and Lemma 4 yield that at points on a
vertical line away from the real axis one has

—Kipﬂ(w)ta{%]dw

n (41)

—l

KZ Pn- 2k—1,[wn 2 lta”( T jdw

k=0

L

2 g Yt
==K Y Progkea| = +i L
k=0 t

t| n-2k

o)
j y“‘zk‘lo[e & ] dy
0

=it

tn—2k

]

2 (71 n-2k
KX pn—2k—l(T+|j

k=0
n

2: Pr-2k- 1h|
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Ny
< t Ki "EKn-2K) o p 242]
= T ——— - t
kZ:;,)pn 2k l|t|n—2k|§( ol j 1
n n

L Ny
2 t Ki 2
=2 Proke1i >

k=0 |t|

(n_ZKJUf_Zk_ZHt 2k} 2H+O(1)
n-2k =1

21-1
n n

P t Ki 2~ (n-2K
== B —— (-1) o2y
k0 It 2

n_2k|:o

LU
Ki 2
anZkl 2k|21:

n-2k | neoke 21-1
(2 e sl
where we are assuming that the integration is carried
out along the line segment joining the originsto

Now, suppose that_=0.
It is not hard to verify that dg - «

cotrr(oy +it)=-i —+O( 2”“‘)

Hence, reasoning as in the previous case, one
obtains that at points on a vertical line away from
the real axis

n, (42)

2
=K Prak 1_[wn 2 lCOt( jdw
k=0 T

n
51 - 2k

o]
= S s
= Pn-2k-1 ! |t| n—2k

o1 -2k 2rl!

+K22 pn—2k—1(%+|j _[yn_ZK_‘O{e ] dy
k=0

n-2k n-2ke

( N j( 1)I of 2k=2l¢2l

(2 ormmneeofy,

ny
t. Ki 2
t| ook

—2kig

Z Pn-2k- 1|
I"I
K
Z

n-2k57

zankl

Combininh (40) - (42), the assertion follows. O

Theorem 11. Let n be odd. Iff (s)=Z, (sg) (case
(@) or f(s)=S,( s¢)(case b)), then

f (oy+it)=g(t)eV) f(=0y-it),

where
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4; n = n-2k -1 _n-2k-21+
ZIECk nr[k¥)2 [2| 1]( 1)‘ gy

g(t)=e = !
-1 =

h(t)=2§2; c_nr( k—ﬂj 22 [n_ZkJ(—l)' o2k
k=0 k E 2 =0 2|

Proof. Let r=1 in the cased) andr=2 in the case

(b).
By [7, p. 116, Th. 3.17],

zrndim()()vol(Y)SPU( Jdw
f(s)=e TvI%) ! f(-s).
Reduce the identity
n-1
. S I
rﬂdTlm x)vol(Y fpa 2 $e nr(k_ﬂj o2k
voI Xd 0 k=0 k= 2

applied in the proof of Lemma 5.

Since
n-1
Z -2k
e k== |s"
k=0 k=
n-1
2
=Yc¢ nr[k—nj(aﬁlt)” 2
k=0 k= 2
-1
2 n-2k( n— 2k
T (DT Hprre
k=0 k= =0
-1 1,
:ic nr(k‘ﬂj zz n-2k -2k-2} 21,21
k=0 k= 2) o\ 2
1 ",
_,_ick nr(k_gj 22 ["Zl‘_z::-(]a?—zk—zmi 2121
k=0 k= =1
1 01,
2 n) & (n-2k | ne2k-211 42!
:zc_nr(k-_j 3 (~1) o2y
k=0 k 2 2 1=0 2l

n-1

— — =k

2 n) 2 n-2k -1 ok
Z k- ( 2) z (ZI-J( )

the theorem follows. O

Theorem 12. Let n be odd. In the cag®), Selberg
zeta function Zs,(so) satisfies the functional

equation

()Y z, (-o.-i twa),

Zs, (0, +ito)=g
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where wOW is non-trivial and

1

n-: n+l
& 2 (n-2K
Yx +|ick I'[ ji[m 1] '1 n2k 2k 2k1

g(t)=e = 5_ |

Proof. Recall the functional equation

. 2nd|m voI
(o () S e

st(sg)ze ‘ ZSX(_S’wU)

applied in the proof of Lemma 7.
Now, following lines of the proof of Theorem 11,
the assertion follows. O

7 Concluding remarks

Let us summarize the aspects in which Theorem 9

represents an improvement of (1).
As already mentioned in the IntroductioN, is one
of the following spaces:

HR*(k=2),HC™(m= ) ,HH' () , HC 4.

Hence, n=k,2m,4l,1€ and pzé(k—l),m,ZH 1,1,

respectively.

Since HC'OHR? and HH'OHR* (see, e.g., [16]),
we may assumen=2 and|>2.

Now, a=n+q-1=k-1,2m,4+ 2,2 respectively.
Obviously,a=2p .

l—i 2
The size of the error term in (1) G{x( 2“] p}. We
bound

compare this bound to our

5o AL
O| x n+2/"l(logx)_1 :

The factor (logx)™
advantage.

gives to our bound some

However, let us have a look at the corresponding

powers ofx.
The inequality

n+pop-1 1
20— ——<| 1-— |2
'On+2p—1 ( 2nj P
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always holds true since the
equivalent inequality (n-1)(20-1)=0 is always
valid. Here, the equality sign occurs only if
X =HR2.

Furthermore, the inequalities

n+p-1_3 <(1——1j2
pn+2p—1_ P= T

corresponding [6] U. Brocker, On Selberg’s zeta functions,
topological zeros and determinant formulas
SFB 288, 1994.

[7] U. Bunke and M. OlbrichSelberg zeta and
theta functions. A Differential Operator
Approach Akademie Verlag, 1995.

[8] D. L. DeGeorge, Length spectrum for compact

locally symmetric spaces of strictly negative

curvature,Ann. Sci. Ec. Norm. Sup., Vol.10,

1977, pp. 133-152.

J. J. Duistermaat, J. A. C. Kolk and V. S.

Varadarajan, Spectra of compact locally

symmetric manifolds of negative curvature,

occurs only ifX = HR¥  k>2. Invent. Math., Vol.52, 1979, pp. 27-93.

On the other side, the right-hand inequality holds [10] D. Fried, The zeta functions of Ruelle and

are always true. [9]
Indeed, the left-hand inequality is valid, being
equivalent to the inequalitn<2p+1. The equality

aso true since it reduces to-2=0. Clearly, the

right-hand inequality becomes equality only if
X =HR?.

Selberg. I,Ann. Sci. Ec. Norm. Sup., Vol.19,
1986, pp. 491-517.

[11] D. Fried, Analytic torsion and closed geodesics

on hyperbolic manifolddnvent. Math., Vol.84,

Summarizing results derived above, we end up with

the conclusion that the obtained bound 1986, pp. 523-540.

[12] D. Fried, Torsion and closed geodesics on
complex hyperbolic manifolddnvent. Math.,
Vol.91, 1988, pp. 31-51.

[13] R. Gangolli, The length spectrum of some
compact manifolds of negative curvaturg,
Diff. Geom., Vol.12, 1977, pp. 403-426.

[14] R. Gangolli, Zeta functions of Selberg’s type

2 n+o-1
O[X "m(bg ><)‘1J is of the formO(xg(Iog >§_1) ,

wmye9<gp if X=HC™, (m=22), HH' (122)

HCazand9=gpif)(=HRk,k22

Note that our result coincides with the best known

results for the compact Riemann surfaces [21] and

the real hyperbolic manifolds with cusps [1].
Also, note that takingk>2n in the proof of
Theorem 9 does not yield a better result.
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